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In Buoni and Petzold (2007) [13] we described a new algorithm for simulation of electro-
chemical systems on two-dimensional irregular, time-dependent domains. Here we show
how to extend the algorithm to three dimensions. We demonstrate our three-dimensional
algorithm by simulating copper electrodeposition into a via structure. This problem poses
challenges for the coupling of the dilute electrolyte (bulk) model to the surface dynamics
model, which involves a complex network of reactions. To handle this coupling, we intro-
duce a new and highly effective semi-implicit method.

Published by Elsevier Inc.
1. Introduction

Electrochemical processes are widely used throughout industry. Applications include batteries, fuel cells, photovoltaics,
application of coatings onto metals and fabrication of interconnects in computer processors. Generally such processes in-
volve electrolytic solutions containing various ions and additives interacting with conducting surfaces on which chemical
reactions and various physical processes occur. These surface processes either produce a voltage difference or are induced
by an applied voltage difference between the surface and electrolyte solution. Although the fundamental equations describ-
ing the bulk electrolyte solution are well known [5], the surface chemistry and dynamics are often less clear and subject to
modeling trial and error. We have developed a highly efficient algorithm that solves the governing equations for the bulk
while allowing the user to include his or her particular surface model with relative ease.

In [13] we described a new algorithm for simulation of electrochemical systems on irregular, time-dependent domains in
two dimensions. Our method uses finite volume discretization of an arbitrarily shaped spatial domain. The resulting differ-
ential algebraic equation system is solved with a time splitting method that involves a projection step used to satisfy the
algebraic constraint (electroneutrality). Here, we extend the method to three dimensions, and apply it to the challenging
problem of simulating electrodeposition of a copper via structure. This requires treatment of the moving boundary and cou-
pling of the dilute electrolyte (bulk) model to the surface model. The boundary is moved using a highly accurate version of
r Inc.

http://dx.doi.org/10.1016/j.jcp.2009.09.032
mailto:mjbuoni@gmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


380 M. Buoni, L. Petzold / Journal of Computational Physics 229 (2010) 379–398
the level set method, which uses points seeded along the interface to track the surface properties and to reconstruct the
interface as required. Both the moving boundary method and the surface–bulk coupling strategy will be addressed here.

It is important to emphasize that to date very few three-dimensional simulations of realistic models for copper electro-
deposition have been performed. The model we use here was developed by researchers at IBM in collaboration with our col-
laborator R. Alkire and his research group at the University of Illinois, Urbana-Champaign in order to explain their
observations on trench infill experiments. Solution additives PEG, Cl�, SPS and HIT are included and allowed to participate
in fourteen different surface reactions as well as three bulk reactions. We will summarize this model in Section 2.3. For fur-
ther details of this model and the determination of the physical parameters, we refer the interested reader to [20–23]. Our
work is distinguished from that of other researchers who have worked on copper electrodeposition [24–28] by the complex-
ity of our model and the generality of our algorithm. Specifically, our algorithm is designed to handle arbitrarily complex
reaction networks in principle by simply modifying an input file. We include the effects of suppressor, accelerator and leveler
additives through the reaction pathway proposed in [20]. From our experience, more complex reaction networks generally
have wider ranges of timescales and thus are susceptible to surface–bulk coupling stiffness. This results in severe time step
restrictions for the standard coupling methods used by other researchers. We address this issue with our semi-implicit cou-
pling algorithm. Additionally, we include electroneutrality of the solution in our formulation, which is usually neglected by
others due to the computational difficulty it presents. As a result, our simulations are able to capture the often subtle but
sometimes significant role that electric migration can play in the local rates of copper deposition.

Three-dimensional simulations are essential for studying problems such as copper nucleation and growth dynamics on
resistive metal substrates, and for studying the process of copper infill of via interconnect structures in computer processors.
Fig. 1 illustrates such a system. In this figure we see that the via consists of a trench shaped region 20–200 nm in width and
Fig. 1. Illustration shows the shape and dimensions of the via physical domain. The governing physics are also indicated for the different regions.
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around 5:1 to 15:1 aspect ratio. At the bottom of the trench a tapered cylinder is bored out (used to connect to a lower layer
of interconnects on a computer processor). The region above the trench consists of dilute electrolyte solution (bulk) and
forms a mass flux boundary layer. At the top of the layer (10–100 lm), the solution is well mixed. It has a fixed far-field com-
position represented by a Dirichlet boundary condition.

This paper is organized as follows. In Section 2 we describe the governing equations, including the complex surface–bulk
reaction network. In Section 3 we discuss the numerical method, with particular attention given to the moving boundary and
surface–bulk model coupling. In Section 4 we perform a series of numerical experiments that test the algorithm’s accuracy
and efficiency. Finally, in Section 5 we illustrate the method by simulating the fully three-dimensional copper infill of a via.

2. Governing equations

2.1. Bulk electrolyte

The governing equations are stiff nonlinear partial differential equations with algebraic constraints [5]. These equations
describe the time evolution of the concentrations of each chemical species, cs. They are derived by conservation of mass with
chemical reactions, diffusion and migration due to electric fields,
@cs

@t
¼ Rsðfcs0 gÞ � ~r � ~Ns; ð2:1aÞX

s

zscs ¼ 0; ð2:1bÞ
where Rs is the net rate of production of chemical species s due to chemical reactions, and is a function of all the other chem-
ical species concentrations, fcs0 g. The flux, ~Ns, of chemical species s due to diffusion and migration is given by
~Ns ¼ �Ds
~rcs � zsusFcs

~rU; ð2:2Þ
where U is the electric potential, Ds is the diffusion coefficient for species s, zs is the charge of species s, us ¼ Ds
RT is the mobility

constant for species s, and F is Faraday’s constant. The algebraic constraint (Eq. (2.1b)) enforces zero net charge density for
the electrolyte solution.

Convective transport may also be included by adding cs~v (where ~v is the fluid velocity) to the flux and coupling these
equations to the Navier–Stokes equations [4], but this is often neglected for systems with dimensions below 1 lm. For these
systems, which will be our focus here, diffusion dominates because the Peclet number is small.

At the upper boundary there is a far-field set of fixed values for each of the chemical species concentrations and the elec-
tric potential, represented by Dirichlet boundary conditions,
cs ¼ c1s ; ð2:3Þ
U ¼ U1: ð2:4Þ
On the sides of the physical domain one can assume either symmetry or periodic boundary conditions, depending on the
shape of the active copper boundary. Here we assume symmetry boundary conditions, which implies that the gradient of
both the concentration fields and electric potential are zero in the normal direction,
~rcs � n̂ ¼ 0; ð2:5Þ
~rU � n̂ ¼ 0: ð2:6Þ
Although the specific form of the boundary conditions at the conducting (i.e. ‘‘active”) surface are application dependent, in
many systems they can be represented as a flux, Js, for each bulk species, s. These fluxes usually depend on many variables,
including the bulk species concentrations at the surface. For example, in copper electrodeposition the surface is modeled as
copper metal covered in a monolayer of adsorbed molecules where reactions occur. Using the reaction rates, we can compute
a net production rate of each chemical species, which results in a flux into the electrolyte solution. This boundary condition
can be expressed as
�~Ns � n̂ ¼ ðDs
~rcs þ zsusFcs

~rUÞ � n̂ ¼ Js; ð2:7Þ
where n̂ is the outward normal direction along the active boundary. The flux, Js, is calculated from a separate surface reaction
model using either deterministic or stochastic dynamics. Generally speaking, Js is the production rate of species s due to sur-
face reactions and is a function of the bulk chemical species concentrations at the surface, fcs0 gjsurface, as well as coverage den-
sities of the adsorbed surface species, fhss0 g, which are tracked by the surface reaction model.

Because we solve for both the concentration fields and electric potential, we need one additional boundary condition for
our system. This condition is contained in the electroneutrality constraint (Eq. (2.1b)). By first computing the gradient and
then taking the dot product in the normal direction, we find
X

s

zs
~rcs � n̂ ¼ 0: ð2:8Þ
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We can explicitly solve Eqs. (2.7) and (2.8) for @cs
@n ¼ ~rcs � n̂ and @U

@n ¼ ~rU � n̂, which yields
Ds
@cs

@n
¼ Js � zsuscs

X
s0

zs0 Js0

Ds0

 ! X
s0

z2
s0us0cs0

Ds0

 !,
; ð2:9Þ

@U
@n
¼ 1

F

X
s0

zs0 Js0

Ds0

 ! X
s0

z2
s0us0cs0

Ds0

 !,
: ð2:10Þ
The active boundary moves due to the deposition of copper resulting from surface reactions, with the local speed given by
vn ¼
JCu

qCu
; ð2:11Þ
where qCu is the density of solid copper.

2.2. Active surface

The active surface forms the lower boundary for the bulk electrolyte region and is the surface on which copper is depos-
ited by a complex sequence of surface reactions. These surface reactions drive the entire system by consuming and produc-
ing chemical species in the surrounding electrolyte solution. In addition, the surface reactions create new adsorbed surface
species which in turn react to form additional solution species. The rate for any surface reaction is calculated as the product
of concentrations of the reactants involved (both in solution and absorbed). Additionally, a multiplicative Boltzmann factor is
included (like in the ButlerVolmer equation) for those reactions involving consumption or production of electrons. These
reaction rates are used to calculate a flux for each chemical species in solution as well as the time rate of change of the sur-
face coverages for each adsorbed surface species. Also included is the rate of solid copper production which determines the
speed at which the active boundary moves by Eq. (2.11).

Our computational framework is quite general and can accommodate a variety of different types of surface models,
including stochastic Kinetic Monte-Carlo models, deterministic mean field models, and hybrid approaches that treat impor-
tant events (such as copper nucleation) stochastically but everything else deterministically.In the example that follows, we
use an ordinary differential equation model, for which we have a set of adsorbed surface species, ss, each having a constant
molar surface density Pss and fractional surface coverage hss, satisfying
X

ss

hss ¼ 1: ð2:12Þ
Mass conservation on the moving, reacting surface is represented by the reaction–advection equation,
@ðhssPssÞ
@t

þ ~r � ð~vhssPssÞ ¼ Rsurf
ss ; ð2:13Þ
where Rsurf
ss is the net production rate of surface species ss due to surface reactions, and ~v ¼ vnn̂ is the interface velocity.

Eq. (2.13) may be expressed in terms of interface curvature j as,
@hss

@t
¼ Rsurf

ss

Pss
� vnjhss; ð2:14Þ
since spatial gradients in the surface coverage, ~rhss, occur along the interface perpendicular to ~v .

2.3. Model specification

Copper electrodeposition is carried out experimentally by our collaborator R. Alkire and his research group at the Univer-
sity of Illinois, Urbana-Champaign using an aqueous solution consisting of the following ingredients: sulfuric acid ðH2SO4Þ,
copper sulfate salt ðCuSO4Þ, polyethylene glycol (PEG), Chloride (Cl� in the form of HCl), bis(3-sulfopropyl)disulfide (SPS) and
(1-(2-hydroxyethyl)-2-imidazolidinethione) (HIT).

Through the proposed surface/bulk reaction network, the bulk electrolyte solution (aq) consists of twelve ions and mol-
ecules, with their properties given in Table 1. On the active surface, there are exposed copper atoms in addition to four ad-
sorbed (ads) molecules, given with their properties in Table 2. The reactions in the bulk electrolyte solution are given in
Table 3, while the surface reactions and rates are given in Tables 4 and 5, respectively. The rate constants used are those
determined in [22]. Expressions for bulk species fluxes and surface species production rates are calculated from the surface
reaction rates and are provided in Tables 6 and 7, respectively. In the reaction tables, the associated mechanism is indicated
by Mech., with the additive-free mechanism denoted by (A-F), suppressor (S), accelerator (A) and leveler (L).

During trench/via infill experiments, it is desirable to control the current rather than the applied potential directly. This is
done by manipulating Eapp to give the target current. In our simulations, we do this by solving the following equation for Eapp

at every time step,



Table 1
Bulk species properties.

s Species Charge, zs Diff. coef., Ds (�109 m2/s) Far field conc. (mol/m3)

1 Cu2þ
aq

2 0.714 300.0

2 Cuþaq 1 1.0 0.0

3 Cl�aq �1 2.032 1.4

4 PEGaq 0 0.05 0.0882
5 SPSaq 0 1.0 0.0282
6 MPSaq 0 1.0 0.0
7 thiolate�aq �1 1.0 0.0

8 HITaq 0 1.0 0.0
9 Hþaq 1 9.311 0.0

10 ðHSO�4 Þaq �1 1.385 0.0
11 ðSO2�

4 Þaq
�2 1.065 0.0

12 ðH2SO4Þaq 0 1.0 1250.0

Table 2
Surface species properties.

ss Species Surface density, Pss (�105 mol/m2) Initial coverage

1 Cus 2.53 1.0
2 CuðIÞthiolateads 2.53 0.0
3 CuClPEGads 0.0633 0.0
4 CuClads 2.53 0.0
5 CuðIÞHITads 2.53 0.0

Table 3
Homogeneous bulk reactions.

j Bulk reaction For. rate, kF (s�1) Back. rate, kB (m3ðmol sÞ�1) Mech.

1 MPSaq�Hþaq þ thiolate�aq 10 105 A

2 ðH2SO4Þaq� ðHSO�4 Þaq þ Hþaq 106 10 A-F

3 ðHSO�4 Þaq� ðSO2�
4 Þaq þ Hþaq 105 104 A-F

Table 4
Surface reactions.

j Surface reaction Mech.

1 Cu2þ
aq þ e� ! Cuþ A-F

2 Cuþaq þ e� ! Cus A-F

3 Cus ! Cuþaq þ e� A-F

4 Cuþaq þ Cl�aq ! CuClads S

5 CuClads ! Cuþaq þ Cl�aq S

6 CuClads þ e� ! Cus þ Cl�aq S

7 CuClads þ PEGaq ! CuClPEGads S
8 CuClPEGads ! CuClads þ PEGaq S
9 SPSaq þ 2e� ! 2thiolate�aq A

10 MPSaq þ Cuþaq ! CuðIÞthiolateads þ Hþaq A

11 CuðIÞthiolateads þ Hþaq ! MPSaq þ Cuþaq A

12 Cuþaq þ CuðIÞthiolateads þ e� ! CuðIÞthiolateads þ Cus A

13 CuðIÞthiolateads þ HITaq ! CuðIÞHITads þMPSaq L
14 CuðIÞHITads þ Hþaq þ e� ! HITaq þ Cus L
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Table 5
Surface reaction rates.

j Reaction rate, rsurf
j

1 ksurf
1 C1ðh1P1Þ expð�a1FðEapp � E0

1Þ=RTÞ
2 ksurf

2 C2h1P1 expð�a2FðEapp � E0
2Þ=RTÞ

3 ksurf
3 h1P1 expðð1� a3ÞFðEapp � E0

3Þ=RTÞ
4 ksurf

4 C2C3h1P1

5 ksurf
5 h4P4

6 ksurf
6 h4P4 expð�a6FðEapp � E0

6Þ=RTÞ
7 ksurf

7 C4h4P4

8 ksurf
8 h3P3

9 ksurf
9 C5ðh1P1Þ expð�2a9FðEapp � E0

9Þ=RTÞ
10 ksurf

10 C2C6h1P1

11 ksurf
11 C9h2P2

12 ksurf
12 C2h2P2 expð�a12FðEapp � E0

12Þ=RTÞ
13 ksurf

13 C8h2P2

14 ksurf
14 C9h5P5 expð�a14FðEapp � E0

14Þ=RTÞ

Table 6
Bulk species fluxes, Js .

s Species Flux, Js

1 Cu2þ
aq �rsurf

1

2 Cuþaq rsurf
1 � rsurf

2 þ rsurf
3 � rsurf

4 þ rsurf
5 � rsurf

10 þ rsurf
11 � rsurf

12

3 Cl�aq �rsurf
4 þ rsurf

5 þ rsurf
6

4 PEGaq �rsurf
7 þ rsurf

8

5 SPSaq �rsurf
9

6 MPSaq �rsurf
10 þ rsurf

11 þ rsurf
13

7 thiolate�aq 2rsurf
9

8 HITaq �rsurf
13 þ rsurf

14

9 Hþaq rsurf
10 � rsurf

11 � rsurf
14

10 ðHSO�4 Þaq 0
11 ðSO2�

4 Þaq
0

12 ðH2SO4Þaq 0

Table 7
Surface species rates of production, Rsurf

ss .

ss Species Rate of production, Rsurf
ss

1 Cus Determined by Eq. (2.12)
2 CuðIÞthiolateads rsurf

10 � rsurf
11 � rsurf

13

3 CuClPEGads rsurf
7 � rsurf

8

4 CuClads rsurf
4 � rsurf

5 � rsurf
6 � rsurf

7 þ rsurf
8

5 CuðIÞHITads rsurf
13 � rsurf

14

6 Solid copper JCu ¼ rsurf
2 � rsurf

3 þ rsurf
6 þ rsurf

12 þ rsurf
14
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I ¼ F
Z

S
Je�dA;

Je� ¼
X

j

ðnRHS
j � nLHS

j Þr
surf
j ¼ rsurf

1 þ rsurf
2 � rsurf

3 þ rsurf
6 þ 2rsurf

9 þ rsurf
12 þ rsurf

14 ; ð2:15Þ
where I is the total current, Je� is the flux of electrons, F is Faraday’s constant (the charge per mole of electrons), and the
integration surface, S, is the entire active boundary. In order to solve Eq. (2.15) for Eapp, the concentrations and coverages
are taken at the previous time step.
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3. Numerical solution

3.1. Bulk electrolyte

Temporal discretization is accomplished via a splitting technique that uses the Backward (implicit) Euler method com-
bined with a projection step [13]. First, we perform a finite volume discretization over the spatial domain. For this, we con-
sider the most complex case: a cell that is cut in an arbitrary way by the active (moving) boundary. After applying the
divergence theorem and approximating boundary integrals by products of average values (at boundary midpoints) multi-
plied by boundary length and area integrals by average values (at cell centroids) multiplied by area, we obtain an equation
of the form:
Fig. 2.
centroi
Vrel
i;j;k

@ðcsÞi;j;k
@t

¼ ðRHSÞðrxnsÞ þ ðRHSÞðdiff Þ þ ðRHSÞðmigÞ þ ðRHSÞðflux;cÞ þ ðRHSÞðflux;UÞ
; ð3:1Þ
where ðcsÞi;j;k is the concentration of chemical species s at the centroid of cell ði; j; kÞ.
ðRHSÞðrxnsÞ

; ðRHSÞðdiff Þ
; ðRHSÞðmigÞ

; ðRHSÞðflux;cÞ and ðRHSÞðflux;UÞ are the cell-integrated reaction, diffusion, migration and
boundary flux terms and are given by:
ðRHSÞðrxnsÞ ¼ Vrel
i;j;kRsðfðcs0 Þi;j;kgÞ ð3:2Þ

ðRHSÞðdiff Þ ¼ Ds

Dx
@cs

@x

����
xþ

hxþ �
@cs

@x

����
x�

hx�

 !
þ Ds

Dy
@cs

@y

����
yþ

hyþ �
@cs

@y

����
y�

hy�

 !
þ Ds

Dz
@cs

@z

����
zþ

hzþ �
@cs

@z

����
z�

hz�

 !
ð3:3Þ

ðRHSÞðmigÞ ¼ ðzsusFÞ
Dx

cs
@U
@x

� �����
xþ

hxþ � cs
@U
@x

� �����
x�

hx�

 !
þ ðzsusFÞ

Dy
cs
@U
@y

� �����
yþ

hyþ � cs
@U
@y

� �����
y�

hy�

 !

þ ðzsusFÞ
Dz

cs
@U
@z

� �����
zþ

hzþ � cs
@U
@z

� �����
z�

hz�

 !
ð3:4Þ

ðRHSÞðflux;cÞ ¼ Dsi;j;k

DxDyDz
Ds
@cs

@n

����
active

¼ Dsi;j;k

DxDyDz
Js � zsuscs

X
s0

zs0 Js0

Ds0

 !
=
X

s0

z2
s0us0cs0

Ds0

 ! !
ð3:5Þ

ðRHSÞðflux;UÞ ¼ Dsi;j;k

DxDyDz
zsusFcs

@U
@n

����
active

¼ Dsi;j;k

DxDyDz
zsuscs

X
s0

zs0 Js0

Ds0

� , X
s0

z2
s0us0cs0

Ds0

 ! !
ð3:6Þ
In these equations, Dx� Dy� Dz are the cell dimensions and Vrel
i;j;k is volume fraction of the cell in solution. In addition,

hxþ ; hx� ; hyþ ; hy� ; hzþ ; hz� are the fractions of the cell faces that are in electrolyte solution (e.g. h ¼ 1 for interior cells and
0 6 h 6 1 for boundary cells) and Ds is the area of the active boundary element (Ds ¼ 0 for non-boundary cells). See Fig. 2
A boundary cell is illustrated above showing the centroid location and area of cell boundary and active boundary elements, as well as cell volume
d and cell center locations. These variables are used in the FV equations for cells cut by the active boundary.
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for an illustration. Details with regard to calculating these geometrical quantities for boundary cells and complete details of
the algorithm including cell-by-cell discretization formulas are included in [14].

The right hand side of Eq. (3.1) is then split into three sets of terms: (1) reaction terms, (2) diffusion terms (plus diffusive
flux terms), and (3) migration terms (plus migration flux terms), as indicated by the superscript. To advance the concentra-
tion fields, ðcsÞi;j;k, from time tn to tnþ1 ¼ tn þ Dt, two intermediate values, ðcsÞð�;rxnsÞ

i;j;k and ðcsÞð�;diff Þ
i;j;k , are calculated. Schematically,

we do the following:
ðcsÞðnÞi;j;k !reactionsðcsÞð�;rxnsÞ
i;j;k !diffusionðcsÞð�;diff Þ

i;j;k !projection
Ui;j !migrationðcsÞðnþ1Þ

i;j;k : ð3:7Þ
By projection, what is meant is that Ui;j;k is computed such that after migration, the charge neutrality constraint is satisfied at
every solution-containing cell center.

Starting from Eq. (3.1), with the left hand side discretized in time, the algorithm proceeds as follows:

(1) Reaction terms
Vrel
i;j;k

ðcsÞð�;rxnsÞ
i;j;k � ðcsÞðnÞi;j;k

� �
Dt

¼ ðRHSÞð�;rxnsÞ
: ð3:8Þ
(2) Diffusion terms (plus boundary flux)
Vrel
i;j;k

ðcsÞð�;diff Þ
i;j;k � ðcsÞð�;rxnsÞ

i;j;k

� �
Dt

¼ ðRHSÞð�;diff Þ þ ðRHSÞðflux;cÞ
: ð3:9Þ
(3) Projection step
X
s

zsV
rel
i;j;k

ðcsÞðnþ1Þ
i;j;k � ðcsÞð�;diff Þ

i;j;k

� �
Dt

¼
X

s

zsðRHSÞðmigÞ þ
X

s

zsðRHSÞðflux;UÞ
: ð3:10Þ
Eq. (3.10), together with the charge neutrality condition,
P

szsðcsÞðnþ1Þ
i;j;k ¼ 0, leads to an implicit Poisson-like equation for the

electric potential, Ui;j;k (contained in ðRHSÞðmigÞ):
Dt
X

s

zsðRHSÞðmigÞ ¼ �Vrel
i;j;k

X
s

zsðcsÞð�;diff Þ
i;j;k � Dt

X
s

zsðRHSÞðflux;UÞ
: ð3:11Þ
(4) Migration terms (using Ui;j;k obtained in step 3)
Vrel
i;j;k

ðcsÞðnþ1Þ
i;j;k � ðcsÞð�;diff Þ

i;j;k

� �
Dt

¼ ðRHSÞðmigÞ þ ðRHSÞðflux;UÞ
: ð3:12Þ
The resulting concentrations, ðcsÞðnþ1Þ
i;j;k , are OðDtÞ accurate and satisfy the charge neutrality condition,

P
szsðcsÞðnþ1Þ

i;j;k ¼ 0, to
machine precision. Eq. (3.8) is solved independently at each finite volume cell by Newton’s method. Eqs. (3.9)–(3.12) lead
to large sparse nearly symmetrical linear systems (one for each concentration field), which are solved with the Incomplete
LU (ILU) preconditioned Biconjugate Gradient Stabilized (BCGSTAB) method as implemented in SPARSEKIT2 [11].

In [13], we showed that this time discretization is convergent with OðDtÞ accuracy, by writing Eq. (3.1) as a DAE system
and verifying that the discretization is OðDtÞ-consistent and 0-stable [2,3].

3.2. Moving boundary

The active, moving boundary between the bulk electrolyte solution and solid copper is tracked by the level set method. In
the level set method a signed distance function, /i;j;k, is defined at the corners of the finite volume cells (staggered grid). We
adopt the convention that points in the electrolyte solution have / > 0 while points in the solid copper have / < 0. Level set
methods have been shown to be robust and efficient numerical methods to track moving boundaries and to compute rele-
vant interface properties, such as curvature and velocity [6–9].

For electrodeposition we compute the follow interfacial quantities: curvature, normal velocity, and adsorbed surface spe-
cies coverages. In order to track these variables as the interface moves, we define extended variable fields, f ext , on the stag-
gered grid in a neighborhood (usually two FV cell diagonals) of the interface with the following properties:
f extð~rsÞ ¼ fs; ð3:13Þ
~rf ext � ~r/ ¼ 0; ð3:14Þ
where f is the surface-defined variable,~rs is a point on the surface and fs ¼ f ð~rsÞ. Eq. (3.13) says that f ext should match fs at
surface point~rs, while Eq. (3.14) says that f ext should be constant along lines normal to the interface, i.e. ~r/.

We compute f ext as follows. We begin with f defined at the boundary cell centroids. Denote these coordinates and the
corresponding f values by fð~rs; fsÞg.



Next we define a set of interface points f~rpg using a sub-grid within each boundary cell (see Fig. 3). The locations of the
interface points are computed from / using trilinear interpolation (see [14] for details). Then we use the function points,
f~rs; fsg, to compute f at the finer resolution interface points, f~rp; fpg, which we do in the following way. Analytically, we write
f ð~rpÞ ¼
Z
@X

f ð~rÞdð~r �~rpÞdA; ð3:15Þ
where dð~rÞ is the two-dimensional delta function on the interface, i.e.
R
@X dð~rÞdA ¼ 1.

Eq. (3.15) may be approximated with a finite width delta function, d�ð~rÞwhere � � Dx. The particular functional form used
here is a Gaussian, d�ð~rÞ / expð�r2=2�2Þ. This yields
f ð~rpÞ ffi
Z
@X

f ð~rÞd�ð~r �~rpÞdA: ð3:16Þ
Finally, we apply Eq. (3.16) numerically as
fp ¼
P

sfsd�ð~rs �~rpÞDAsP
sd�ð~rs �~rpÞDAs

; ð3:17Þ
where DAs is the area of the interface element in boundary cell s. In practice, we truncate this summation outside a window
of two cell widths surrounding point p. Note that for interface points near symmetry boundaries, we use ghost surface points
sg to exactly mimic the effect of the surface outside of the domain.

The last step is to map f ext
i;j;k (located at~ri;j;k) to its closest interface point,~rp. This mapping is computed by looping through

all the interface points. For each interface point, the squared distance to all the staggered grid points in a neighborhood of~rp

is computed. The minimum squared distance, d2
p , is monitored and updated for each staggered grid point, along with the cor-

responding interface point, p. Finally, f ext is given by
f extð~ri;j;kÞ ¼ fp: ð3:18Þ
Correspondingly, the level set function is periodically redistanced (after moving by more than a FV cell diameter) as
/i;j;k ¼ dp: ð3:19Þ
It is straightforward to verify that Eqs. (3.13) and (3.14) are satisfied to second order spatial accuracy provided that the inter-
face point sub-grid is sufficiently well refined. First, each interface point location is second order accurate. Next, Eq. (3.17)
computes fp as a weighted average of nearby surface points, which is a form of second order interpolation. Finally, to see Eq.
(3.14) is satisfied notice that the line connecting~ri;j;k and~rp (for which f ext is constant) is parallel to ~r/ since point p is grid
point ði; j; kÞ’s closest interface point. We note that a conceptually similar method has been reported in [10].

We advance the level set function using the advection equation @/
@t ¼ �vn
� �

,

/ðnþ1Þ
i;j;k � /ðnÞi;j;k

Dt
¼ �ðvext

n Þ
ðnÞ
i;j;k; ð3:20Þ
which preserves the signed distance property.
Curvature can be calculated directly from the level set function,
j ¼ ~r � n̂ ¼ ~r �
~r/

j~r/j

 !
; ð3:21Þ
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where all terms are evaluated by second order centered difference formulas. However, accuracy will be degraded wherever
j � Dx�1. For electrodeposition, we found that no matter how refined we made our grid, regions of high curvature would
develop near the bottom corners of the trench and result in inaccuracies when computing Eq. (2.14). These inaccuracies
led to excessive numerical mass loss of key adsorbed surface species.

We note that this mass loss issue was not observed for the standard expanding and contracting circle test cases. For these
cases, we observed excellent mass conservation with OðDx2Þ accuracy [14]. Although there are fully conservative approaches
to the mass conservation issue [28,29], we chose to use an empirical approach that we believe is useful due its simplicity and
effectiveness. After calculating the curvature according to Eq. (3.21), we multiply by a scaling factor, Cj. By performing
numerical experiments, we found a good choice for Cj to be
Fig. 4.

Fig. 5.
factor,
Cj ¼ 1:0þ 0:5ð1� expð�1:5jjjDxÞÞ: ð3:22Þ
From this form, we can see that Cj � 1 for jjj 	 Dx�1, which says we do not alter the curvature calculation in well-resolved
regions of the interface. However, Cj � 1:5 for jjj � Dx�1. This says we scale the curvature by a factor of up to 1.5 in unre-
solved regions of very high curvature. Numerical tests of a conformally filling trench of aspect ratio 2 having an initially uni-
form accelerator coverage reveal that the total accelerator mass changes by less than 3% for three different resolution grids
up to the point that a seam is formed. This is in contrast to a mass loss of around 25% when using the unmodified curvature
calculation on grids of the same resolution. Notice that the mass loss becomes worse as the grid is refined, which is due to
steeper gradients in the surface coverage. We imagine that conformal infill represents the ‘‘worst case scenario,” since the
sharp corner at the trench bottom remains unresolved over the entire infill process. During electrodeposition, the accumu-
lation of accelerator at these corners would cause a local increase in deposition rate causing rounding of the corners (see
Figs. 4 and 5).

3.3. Coupling algorithm

The bulk electrolyte and surface models are coupled by the fluxes, fJs0 g, and bulk electrolyte concentrations and potential
at the surface, fcs0 ;Ug. The fluxes are output from the surface reaction code and provide boundary conditions to the bulk
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

time

In
te

gr
at

ed
 a

cc
el

er
at

or
 c

ov
er

ag
e

NX = 25
NX = 50
NX = 100

Total accelerator coverage integrated over trench during conformal infill starting with uniform coverage of accelerator using unscaled curvature.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

time

In
te

gr
at

ed
 a

cc
el

er
at

or
 c

ov
er

ag
e

NX = 25
NX = 50
NX = 100

Total accelerator coverage integrated over trench during conformal infill starting with uniform coverage of accelerator using curvature with scale
Cj , given by Eq. (3.22).



M. Buoni, L. Petzold / Journal of Computational Physics 229 (2010) 379–398 389
electrolyte code, while the concentrations and potential are output from the bulk electrolyte code and act as parameters in
the surface reaction code. In addition, the flux of copper JCu is used to advect the level set function (Eq. (2.11)). There are
many ways that one can try to couple these computations. In our work, we explored three different approaches: explicit cou-
pling, fully implicit coupling, and semi-implicit coupling. Explicit coupling is efficient per time step, but becomes unstable and
inaccurate for most realistic surface reaction rates using reasonable time step sizes. Fully implicit coupling is stable and
accurate for a much larger range of surface reaction rates than explicit coupling, but becomes inefficient and occasionally
nonconvergent for very stiff surface reactions. Finally, semi-implicit coupling is stable and accurate for all the surface reac-
tion rates we have tested, while attaining the same high efficiency per time step as explicit coupling.

In the subsections that follow, we will briefly describe these methods. To aid in the discussion, we introduce the following
notation. Define one iteration of the surface code (reactions only) to be F,
hðnþ1Þ ¼ F1ðhðnÞ; cÞ; ð3:23aÞ
Jðnþ1Þ ¼ F2ðhðnÞ; cÞ: ð3:23bÞ
Here, the bulk concentration (and potential) c may be regarded as a constant parameter during the integration window
½tðnÞ; tðnÞ þ Dt
. Similarly, we define one iteration of the bulk code to be G,
cðnþ1Þ ¼ GðcðnÞ; JÞ: ð3:24Þ
This time, the active boundary flux J is regarded as the constant parameter. We will show that different strategies for choos-
ing these input parameters, c and J, lead to very different outcomes in accuracy and stability of the coupling.

3.3.1. Explicit coupling
Explicit coupling proceeds as follows for each time step. First the surface code is run and the flux output is used as the

input to the bulk code. Then the bulk code is run and the concentrations and potential are used as inputs to the surface code.
Using the notation introduced above, explicit coupling may be written as
hðnþ1Þ ¼ F1ðhðnÞ; cðnÞÞ; ð3:25aÞ
Jðnþ1Þ ¼ F2ðhðnÞ; cðnÞÞ; ð3:25bÞ
cðnþ1Þ ¼ GðcðnÞ; Jðnþ1ÞÞ: ð3:25cÞ
To understand the instabilities that can arise in this coupling, substitute (3.25b) into (3.25c), yielding
cðnþ1Þ ¼ GðcðnÞ; F2ðhðnÞ; cðnÞÞÞ: ð3:26Þ
Next compute the Jacobian (for simplicity, we consider the case of fixed h, which more clearly illustrates the dominant mech-
anism causing instability),
@cðnþ1Þ

@cðnÞ
¼ @G
@c
þ @G
@J

@F2

@c
: ð3:27Þ
The first term, @G
@c , is stable since the bulk code always converges for constant flux input, as reported in [13]. Therefore, any

instabilities that arise are due to the second term, which describes the bulk–surface coupling. The first part of the second
term is well-behaved, @G

@J

			 			 � 1, since it a measure of the bulk sensitively to the flux boundary condition, which is controlled

by diffusion. However, the second part of this term is a measure of the surface reaction sensitivity to bulk concentrations.
Since many of the surface reactions are very fast, this results in @F2

@c

		 		� 1 for reasonably small time steps. This causes explicit
linkage to be highly unstable. For example, using typical surface reaction rate constants time step size must be reduced by
more than four orders of magnitude (from 10�3 s to less than 10�7 s) compared to the time step required to accurately track
system changes.

3.3.2. Fully implicit coupling
In fully implicit coupling, both the concentration input to the surface code and the flux input to the bulk code are taken at

the next time step, ðnþ 1Þ. Using the notation defined above, we have
hðnþ1Þ ¼ F1ðhðnÞ; cðnþ1ÞÞ; ð3:28aÞ
Jðnþ1Þ ¼ F2ðhðnÞ; cðnþ1ÞÞ; ð3:28bÞ
cðnþ1Þ ¼ GðcðnÞ; Jðnþ1ÞÞ: ð3:28cÞ
Computing the Jacobian, we find
@cðnþ1Þ

@cðnÞ
¼ I� @G

@J
@F2

@c

� ��1
@G
@c

: ð3:29Þ
We see that the terms responsible for instability in the explicit coupling method now appear in a matrix inverse, which should
stabilize this coupling.
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However, solving (3.28a)–(3.28c) consistently is not a simple task. They comprise a very large nonlinear equation system
connected at the boundary, which may be written compactly in terms of the unknown boundary fluxes as
Jðnþ1Þ � F2ðGðJðnþ1ÞÞÞ ¼ 0; ð3:30Þ
The challenge for this method lies in approximating the Jacobian (required for Newton iteration of (3.30)) in an accurate and
efficient manner. Since we found semi-implicit coupling to be a better choice for our problems, we will not describe fully
implicit coupling in detail. The interested reader is referred to [14].

3.3.3. Semi-implicit coupling
Semi-implicit coupling attempts to capture the best of both worlds: explicit coupling and fully implicit coupling. The fact

is it does even better than that. It is more stable and robust than fully implicit coupling, but every bit as efficient as explicit
coupling. Semi-implicit coupling solves the following equations at each time step:
hðnþ1Þ ¼ F1ðhðnÞ; cðnÞÞ; ð3:31aÞ
Jðnþ1Þ ¼ F2ðhðnÞ; cðnÞÞ; ð3:31bÞ
cðnþ1Þ ¼ GðcðnÞ; Jð�ÞÞ: ð3:31cÞ
Here, Jð�Þ is the semi-implicit flux given by the mixed time step expression:
Jð�Þs ¼ aðnÞs þ bðnÞs cðnþ1Þ
s ; ð3:32Þ
where a and b are functions of h and c. Eq. (3.32) uses the fact that Js is linear in cs. In other words, both as and bs are inde-
pendent of cs. This linearity assumption holds in our model since surface reaction rates are proportional to bulk concentra-
tions with constant rest potentials for Faradaic reactions. Furthermore, they are trivial to compute in terms of the flux
function F2,
aðnÞs ¼ F2 hðnÞ; cðnÞ � cðnÞs

� ����
s
; ð3:33aÞ

bðnÞs ¼ F2 hðnÞ; cðnÞ � cðnÞs þ 1s

� ����
s
� aðnÞs : ð3:33bÞ
Thus, aðnÞs is calculated by computing the flux function F2 with cs ¼ 0, and bðnÞs is calculated by computing the flux function
with cs ¼ 1 and subtracting aðnÞs . Although linearity does not hold for more refined surface models, we can modify this ap-
proach by allowing bðnÞs to have cs dependence. We have done this successfully for rest potentials with cs dependence.

The linear decomposition of Js with respect to cs is precisely what gives this method its high computational efficiency.
Recall from Section 3.1 that the active boundary flux terms are included in the diffusion step of the bulk splitting algorithm.
In that step, we solve a separate linear system for each bulk species, s. Since our expression for Jð�Þs is linear in cs, the implicit
part ðbðnÞs cðnþ1Þ

s Þ may be readily incorporated into the linear system and solved at little or no extra computational expense.
As for the stability of semi-implicit linkage, let us first look more closely at the most problematic term, @J

@c. Writing
Js ¼ as þ bscs, we examine the Jacobian
@J
@c
¼ @a
@c
þKc

@b
@c
þKb; ð3:34Þ
where Kc and Kb are the diagonal matrices with elements c and b, respectively.
In our surface reaction model, the largest magnitude terms (by far) are contained in Kb. This is because the fastest reac-

tions are those that rapidly consume bulk species s resulting in a flux, Js / �cs, with a large proportionality constant, i.e.
jbsj � 1. These reactions quickly become diffusion rate limited with cs attaining very small values along the active boundary,
resulting in a bounded and well-behaved product, bscs. By this same reasoning, one can see that the product Kc

@b
@c is also

bounded and well-behaved.
To see how the preceding discussion helps us understand the stability of this coupling method, we examine the Jacobian,

@cðnþ1Þ

@cðnÞ . Taking the directional derivative of Eq. (3.31c), we obtain
@cðnþ1Þ

@cðnÞ
¼ @G
@c
þ @G
@J

@a
@c
þKc

@b
@c
þKb

@cðnþ1Þ

@cðnÞ

� �
: ð3:35Þ
Solving for @cðnþ1Þ

@cðnÞ yields
@cðnþ1Þ

@cðnÞ
¼ I� @G

@J
Kb

� ��1
@G
@c
þ @G
@J

@a
@c
þKc

@b
@c

� �� �
: ð3:36Þ
Now we can see more clearly why this method works. The implicit part of the flux containing the stiffest terms appears in the
inverse matrix, which provides stability. This strategy may also be regarded as a highly efficient, diagonal approximation Kb

to the Jacobian term @F2
@c described in the previous section, which is made even more efficient by the observation that linearity

of the flux expression enables a semi-implicit method.
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We conclude this section by discussing similar methods that have been implemented in the literature. It seems that our
method is most directly comparable to domain decomposition methods. One situation where domain decompositions are
often performed is when the physical domain can be split into two or more subdomains, each governed by different physical
equations. The subdomains are usually coupled by the continuity or equality of certain quantities along the boundary. In fact,
the explicit coupling algorithm is nothing but the Schwarz alternating method applied to the surface and bulk subdomains.
There is a considerable body of theory describing the conditions for convergence [19]; obviously, our problem does not meet
these criterion. In our search, we found the most applicable literature to be for acoustic systems with solid and fluid subdo-
mains. For this problem, effective algorithms have been proposed using variants of the Schwarz alternating method [16,17].
To improve on the accuracy, others have applied schemes to iterate between the subdomains (often on a series of coarser
grids) to better satisfy the boundary condition between the two subdomains [18]. Such techniques have been widely imple-
mented in FETI methods (used in structural mechanics) and have a well-developed theory with regard to convergence prop-
erties [19]. Our fully implicit algorithm may be regarded as a variant of such methods. We are not aware of an analog of our
semi-implicit coupling method.
4. Tests and validations

4.1. Accuracy tests

4.1.1. COMSOL comparisons
Since analytical solutions to our entire model are not feasible, we decided to compare simulation results using our algo-

rithm to COMSOL simulation results using the Nernst–Planck module. For simplicity we consider a fixed flat one-dimen-
sional surface rather than a filling trench. However, no other simplifications are made; the full model of Section 2.3 is
solved. We set a boundary layer thickness of 50 lm and a fixed applied potential of �0.5 V. For our algorithm, we use
Fig. 6. Above we show COMSOL simulation results (indicated by crosses) of our model along with simulation results using our algorithm (solid line). We
plot the transient concentrations of a few key solution species (Cuþ; Cl�; PEG, and SPS) at the active boundary for a one-dimensional flat surface.
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360 FV cells in the solution ranging in thickness from 1 nm at the active surface to just under 1 lm at the far field. We specify
an initial time step size, Dt ¼ 5� 10�7 s, and gradually increase (over the duration of the initial transient) to 2:5� 10�4 s,
which corresponds to a typical resolution and time step size used in our trench simulations. We plot the transient concen-
trations of four key solution species evaluated at the interface. We see excellent agreement to within about 5 % over the en-
tire time interval (see Fig. 6).

4.1.2. Convergence and self-consistency
Here we describe a set of tests done to validate the accuracy and confirm the convergence properties of our coupled bulk

electrolyte plus surface model. First, we test the accuracy for a fixed boundary system after a relatively short time has
elapsed. This test allows us to isolate the coupling without considering the interaction with the moving boundary. Addition-
ally, the short time interval allows us to refine the grid and time step sufficiently to verify the expected convergence. Next,
we test the accuracy of our method for more realistic numerical simulation conditions. This test includes the moving bound-
ary as well as long time dynamics. It was not computationally feasible to run this case at a fine enough resolution to see the
expected convergence. Instead, we regard this test as an assessment of ‘‘real world” qualitative performance of our method.

For these tests, we used the reaction mechanism described in Section 2.3. The domain shape was a fixed trench shape
(180 nm width, 5:1 aspect ratio and 50 lm boundary layer) and was run for t ¼ 0:5 s (during the initial system transient).
A total of four computational grids were used, with Dt

Dx2 fixed. The resolutions and fixed time step sizes are given in Table 8.
The coarser grid solutions (grids 1, 2 and 3) were compared to grid 4 by averaging the grid 4 numerical solutions over

8� 8; 4� 4 and 2� 2 sub-grid squares, respectively. Errors were computed using the following definition for the error in
species s,
Table 8
Grid re

Grid

1

2

3

4

ðEL1Þs ¼
maxi;j ðcsÞi;j � ðcsÞðexactÞ

i;j

��� ���
maxi;j ðcsÞðexactÞ

i;j

��� ��� : ð4:1Þ
The typical value of the fluxes, Js, ranged from 10�1 mol=m2 s for Cl� and PEG, to greater than 100 mol=m2 s for Cuþ and for
Cu2þ. Other species are have either zero or order 1 mol=m2 s flux.

Numerical errors are plotted in Fig. 7 for each of the species concentration fields. The first observation is that there is a
large difference in the accuracy of the most ðHSO�4 Þ to least ðCuþÞ accurate species. This is because some species (such as
HSO�4 ) change very little relative to their far-field concentration and reach a steady-state quickly. In addition, species with
small flux to diffusivity ratios tend to be computed more accurately, which is the result of small, well-resolved gradients near
the active boundary. On the other hand, species that are not present as additives but are generated by fast surface reactions
solutions and time step sizes for coupled models, short timescale tests.

no. Uniform region res. Nonuniform region res. Time step, Dt (s)

20 � 50 20 � 40 4� 10�3

40 � 100 40 � 80 1� 10�3

80 � 200 80 � 160 2:5� 10�4

160 � 400 160 � 320 6:25� 10�5
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Fig. 7. Here we plot the numerical error in the coupled surface–bulk code for each chemical species.
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Fig. 8. Infill contours shown at 4 s intervals for trench infill simulations with additives on grids 1, 2 and 3.
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Fig. 9. Infill contours shown at 8 s intervals for trench infill simulations without additives on grids 1, 2 and 3.
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and consumed equally quickly (e.g. Cuþ; MPS) tend to have more complex spatial concentration distributions and are more
difficult to resolve, making them subject to larger numerical errors. We see that the numerical errors in ½Cu2þ
; ½Cuþ
 and
[MPS], in particular, converge slightly slower than the expected OðDx2Þ, which is similar to the convergence results reported
in Fig. 7 of [13]. The large flux creates a sharp boundary layer in ½Cuþ
 near the active boundary during the transient that is
difficult to resolve with our uniform grid spacing.

Next we tested the accuracy of our coupled code over long time scales, namely the entire process of trench infill (�100 s
for 180 nm wide trench). We already learned that the standard error measures can be quite large for species with steep gra-
dients in their concentration fields even over short timescales. Now we investigate how these errors contribute to the overall
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Fig. 10. Efficiency of the coupled simulation for 2D trench problem.

Table 9
CPU time (P4 – 3.2 GHz) data for 2D trench problem.

Grid dimensions CPU time/time step (s) No. of time steps Total CPU time

20 � 90 0.056 2:5� 104 37 min

40 � 180 0.198 1:0� 105 5.5 h

80 � 360 1.24 4:0� 105 5.7 days

160 � 720 6.30 1:6� 106 117 days
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qualitative features of the simulation. To this end, we perform two simulations (additive-free and additive infill) each on
three different grids (grids 1–3 of Table 8). All simulations start out with small initial time step size, Dtmin ¼ 5� 10�7 s to
better resolve the initial transient, and is increased gradually.

In Figs. 8 and 9, we compare the infill contours obtained on our three grids. Here, we see a remarkable qualitative sim-
ilarity. All three simulations for different grid resolutions predict a similar size void for additive-free infill, while they predict
bottom-up superfilling (trench filling without voids or seams) for infill with additives.
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Fig. 11. Efficiency of the coupled simulation for 3D via problem.



Table 10
CPU time (P4 – 3.2 GHz) data for 3D via problem.

Grid dimensions CPU time/time step (s) No. of time steps Total CPU time

20 � 90 � 10 1.28 2:5� 104 8.9 h

40 � 180 � 20 13.7 1:0� 105 15.9 days

80 � 360 � 40 150 4:0� 105 1.9 years

160 � 720 � 80 1558 1:6� 106 79 years
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4.2. Efficiency tests

Here, we measure the efficiency for both a 2D and 3D problem (using semi-implicit coupling).
First, we consider the trench shaped domain in 2D. CPU time versus problem size is shown in Fig. 10. Actual CPU times for

entire simulations are shown in Table 9. The scaling complexity of our method is excellent. With optimal complexity scaling
being OððNeqnsÞ1:0Þ, our coupled method scales as OððNeqnsÞ1:14Þ. We note that this is a huge improvement over previous meth-
ods, that scaled approximately as OððNeqnsÞ2Þ [1]. Most of our simulations are run on grid 2, requiring a total CPU time of
about 5.5 h running on a single core of a 3.2 GHz Pentium 4 processor. We note that we can perform entire numerical sim-
ulations on grid 1 in about 37 min. This is remarkable since we verified that this grid yields good qualitative accuracy. As a
point of reference, previous methods using even coarser grids to solve this same set of equations required 7–8 h [12]. This is a
15-fold increase in computational efficiency that only gets better as the grid is further refined!
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Fig. 12. Simulation of copper electrodeposition with additives for 180 nm wide and 180 nm long, 5:1 aspect ratio trench with 90 nm 1:1 aspect ratio
tapered cylinder at the bottom: infill contours perpendicular to the trench axis are plotted at 1 s intervals for first 10 s followed by every 2 s.
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Next, we measured the efficiency for the 3D problem. The specific geometry that we consider is a 2D trench revolved
about its central axis, thus a right cylindrical via. We note that even though this problem is axially symmetric, it represent
a fully 3D domain since we use cartesian coordinates in our simulation code. The computational complexity is plotted in
Fig. 11 and the CPU times for entire simulations are given in Table 10. Note that the last two simulations were not performed
in their entirety but instead were solved for a few time steps and the timing results were extrapolated. The complexity scales
about the same as for the 2D trench problem, but the overall constant of proportionality is about four times larger for the 3D
problem. This can be attributed to the extra couplings of the unknown variables, making the linear solvers less efficient, as is
observed by the increased number of iterations required for convergence. It is clear from the total simulation time that
highly resolved 3D simulations are out of the question at this point. However, from the results of Section 4.1.2, we do not
actually have to use highly resolved grids to make qualitatively accurate predictions. One way we can envision to improve
the efficiency is to parallelize the linear solvers. We conclude this section by noting that our semi-implicit algorithm has
been stable and robust for all the surface model parameters that we have tested.
5. Application to 3D via infill

In this section, we consider the infill of a three-dimensional via consisting of a 2D trench with a tapered cylinder extend-
ing down from the trench bottom. The trench width is 180 nm with 5:1 aspect ratio, and the cylinder diameter is 90 nm with
1:1 aspect ratio. These geometries are often used in computer processor chips to connect one level of interconnects to the
next lower level, and are of interest to researchers at IBM. The surface chemistry mechanism is that described in Section 2.3
with a constant current of 75 A=m2, and may be understood as follows. Two suppressor additives (Cl� and PEG) and one
accelerator additive (SPS) are included in solution in addition to the basic CuSO4 salt plus acid H2SO4 cocktail required for
electrodeposition. Note that we set the leveler additive (HIT) concentration to zero for simplicity.
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Fig. 13. Simulation of copper electrodeposition with additives for 180 nm wide and 180 nm long, 5:1 aspect ratio trench with 90 nm 1:1 aspect ratio
tapered cylinder at the bottom: infill contours parallel to the trench axis are plotted at 1 s intervals for first 10 s followed by every 2 s.
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The infill profiles are plotted along the two planes of symmetry. Fig. 12 shows infill contours along the plane perpendic-
ular to the trench and through the cylinder’s diameter. Fig. 13 displays infill contours along the plane parallel to the trench
axis and through the cylinder’s diameter.

The simulations reveal that the small cylinder initially begins to fill conformally. As it fills, the deposition rate near the
cylinder axis rapidly increases, leading to the formation of a large hump at the trench bottom. The hump then spreads
out (more so along the trench axis) as the trench section starts to fill. The trench then continues to fill from the bottom
up, i.e. superfilling.

The mechanism for the observed infill may be understood as follows. To begin, Cu2þ is readily reduced to Cuþ at the sur-
face. Next, Cuþ and Cl� react to produce adsorbed CuCl on the surface. Solution additive PEG then reacts rapidly with ad-
sorbed CuCl, being converted to CuClPEG on the surface, which occupies a much greater surface area (estimated at 40
times) than CuCl alone. This rapidly covers the top part of the trench and continues to spread down into the trench as de-
pleted PEG is gradually replenished by diffusion. Copper deposition is effectively suppressed on those parts of the trench sur-
face covered by CuClPEG (suppressor). During the window of time that the trench bottom is free of CuClPEG, additive SPS is
converted to intermediate MPS, which builds in solution. MPS and Cuþ then react to create adsorbed CuðIÞthiolate (acceler-
ator), which catalyzes copper deposition. As deposition occurs more rapidly near the trench and cylinder bottom and they
begin to fill, the adsorbed CuðIÞthiolate becomes more concentrated due to the surface’s concave curvature, thus covering an
increasing fraction of the surface. This so-called ‘‘curvature enhanced accelerator coverage” [15] is greatest near the trench
corners initially but quickly builds at the cylinder bottom, resulting in the high rate of deposition near the center of the cyl-
inder and the subsequent hump formation. The hump dissipates as new Cu sites open up and CuðIÞthiolate is rapidly ad-
sorbed. After a short time (about 10 s), the entire trench bottom is covered with accelerator while the sidewalls and top
are covered with suppressor. In this way, deposition continues at the trench bottom while being suppressed elsewhere.
In order to achieve this balance, it was important to choose additives with very specific reaction chemistries and rate con-
stants in addition to the choosing the right amounts of each. This is the main goal of such a simulation: to identify the prop-
erties of and quantities of additives that will result in superfilling for these and ever-smaller geometries.
6. Conclusions

In this work we have developed a general and fully three-dimensional numerical strategy for simulating electrochemical
systems on irregular domains with moving boundaries. This involves solving the governing partial differential equations
with algebraic constraints in the bulk electrolyte which are stiffly coupled to an active surface where chemical reactions
and other physics occur. Our method makes only a few assumptions about the active surface, namely that it is driven by
the bulk chemical species concentrations and applied potential and that it produces a flux of each species back into solution.
Otherwise, the details of the surface model are of little consequence. The particular application we study here is copper elec-
trodeposition as applied to filling trench/via interconnects in computer processors.

To summarize, our computational method for the bulk electrolyte region splits the three distinct physical phenomena
that occur into fractional steps. The homogeneous reactions and diffusion are handled with backward Euler discretization
to treat stiffness, while the electrical migration is treated with a projection step which satisfies the charge neutrality con-
straint exactly. Spatial discretization is performed using the finite volume method, which conserves species mass exactly
and retains second order spatial accuracy, even near the irregular boundary. A nonuniform grid region above the active sur-
face is used to resolve the diffusion boundary layer that is about two orders of magnitude thicker than the trench dimen-
sions. The level set method is adopted to move the interface, but modified to prevent the degradation of accuracy that
can result from the first order accurate fast marching method. The closest point algorithm is used to reconstruct the interface
with second order accuracy before redistancing is performed. Curvature is calculated using an empirically determined scal-
ing factor multiplied by the finite difference formula. This was necessary in order to better conserve surface species in re-
gions of very high curvature. To couple the bulk electrolyte and active surface regions, we developed a semi-implicit
coupling method that handles the stiff coupling problem robustly and efficiently.

With numerical experiments, we found that the CPU times scale as a small power of the problem size, N, namely TCPU / Np

where p � 1:15. Direct comparison of our method’s efficiency with existing numerical strategies for solving this same com-
plex model revealed that our method can compute in about 30 min what previously took 8 h. In addition, previous methods
scaled very poorly with grid refinement ðp � 2Þ and were not second order accurate near the moving boundary.

Finally, we applied our coupled bulk–surface algorithm to study the infill of a three-dimensional via. We found that our
method is able to predict the superfilling phenomenon seen experimentally with a careful balance of solution additives, as
well as some subtle details of the infill characteristics.
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